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A general model for calculating the average properties of the copolymer formed between two polydisperse 
reactive polymers is developed. Mn, Mw, Mz, Mz+l and other higher average molecular weights can all be 
described as a function of the reaction conversion and the average properties of two reactive polymers directly 
without calculation of the complete distribution. The predictive capacity of the model is limited to reaction before 
gelation and can be used for prediction of the gel point. The model is explicitly formulated and can therefore be 
readily applied. © 1997 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

Blending two or more existing polymers provides the 
opportunity to make new materials with improved proper- 
ties. The study of polymer blends has therefore recently 
developed rapidly. In some cases, reactive extrusion is used 
for compatibilizing dissimilar polymers 1-3. New covalent 
bonds are formed by grafting reaction between two reactive 
polymers during the extrusion process. As a knowledge of 
the molecular weight distribution of polymers is essential 
for synthesis and application, a quantitative description of 
average properties of the resulting copolymer formed by 
two reactive polymers is also of prime importance in its 
physical characterization. 

Despite the large number of studies on the theory of 
network formation for polymers formed from two types of 
monomer 4-16, very few studies have been published on the 
theory of grafting reactions between two reactive polymers. 
Recently, Nie et al. 17,18 proposed a kinetic approach for the 
grafting system between two reactive polymers. In their 
model, the kinetic equations describing the rate of change of 
the concentrations of individual polymer species are listed. 
With the approximation of two reactive polymers having an 
infinite number of reactive groups, the concentrations of 
individual species are solved as a function of the gr__afting 
conversion. Then, the average molecular weights (M. and 
Mw) are computed from the concentrations of individual 
polymer species formed or by introducing probability 
generating functions. For the general case of polymer 
blends formed from two polydisperse reactive polymers, the 
mathematics involved in their model becomes very 
complex. 

The objective of this paper is to develop, based on the 
probability theory originally proposed by Macosko and 
Miller j3, a systematic approach for calculating all the 
average molecular weights of the resulting copolymer 
formed between two polydisperse reactive polymers. Gel 
point, Mn, Mw, Mz, Mz+z and other higher average 
molecular weights can all be described as a function of 
the reaction conversion and the average properties of two 

polydisperse reactive polymers directly, without calculation 
of the complete distribution. 

THEORY 

In the derivation, we retain Flory's simplifying 
assumptionsS: (1) all functional groups of the same 
type are chemically equivalent and hence equally 
reactive; (2) the reactivity of a given group is independent 
of the size or structure of the molecule to which it is 
attached; (3) intramolecular reactions are forbidden. In 
addition, the interacting polymer-polymer system is 
assumed to be completely mixed in formulating the 
model. 

Consider a copolymerization system consisting of na 
moles of polymer A with reactive sites 'a', reacting with nB 
moles of polymer B with reactive sites 'b'. Since polymer A 
is polydisperse, let nA,i (i = 1,2 .... 0O represent the number of 
moles of 'polymer A with i reactive sites' (denoted A i )  and 
its molecular weight be MA,i. Similarly, since polymer B is 
polydisperse, let nB,~ (i = 1,2 ..... g) represent the number of 
moles of 'polymer B with i reactive sites' (denoted B~) and 
its molecular weight be MB,~. By our definition, 
~f= ~g Denote nA,iln A Pi 1 /'/A, im' / ' /A and i = l  nB, i----nB" 
and riB,i/riB = qi, where Pi represents the fraction of 
'polymer A with i reactive sites', and q~ represents the 
fraction of 'polymer B with i reactive sites'. 

Let ct represent the fraction of 'a' sites that have reacted 
and/3 the fraction of 'b' sites that have reacted. In other 
words, a represents the probability of a randomly chosen 'a' 
reacting with 'b' and /5 represents the probability of a 
randomly chosen 'b' reacting with 'a'. Then the average (or 
expected) number of 'a' sites consumed for 'polymer A with 
i reactive sites' at conversion t~ is: 

)kA, i = iot ( l )  

By the law of total probability for expectation, the average 
number (or the expected number) of 'a' sites consumed for 
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polymer A at conversion ~ is given by: 

f f 

XA = ~ (PiXA, i) = c~ ~ .  (ipi) = ~(Mn, AlMA. l) (2) 
i=1 i=1  

Similarly, the average (or expected) number of 'b '  sites 
consumed for 'polymer B with i reactive sites' at conversion 
c~ is: 

XB, i = i/3 ( 3 )  

and the average number (or the expected number) of  'b '  
sites consumed for polymer B at conversion ot is given by: 

g g 

X B = ~ .  (qihB, i)=13 y. (iqi)=t3(M.n,B/MB, 1) (4) 
i=1 i=1 

g • 
Note that ~f=_L(iPi) a n d  ~i=l(tqi) are replaced by 
Mn, A/MA, l a__nd M,,B/MB, l, respectively (see Appendix A). 
Mn, A and Mn, B represent the number-average molecular 
weights of polymer A and polymer B respectively. MA, I 
and MB,I are the molecular weights of  'polymer A with 
one reactive site' and 'polymer B with one reactive site' 
respectively. It is assumed that the reactive sites are 
uniformly distributed on the polymer chain for both polymer 
A and polymer B, i.e. MA, i -~ iMa,l and MB, i = iMB:. MA,i 
and MB,i are the molecular weights of 'polymer A with i 
reactive sites' and 'polymer B with i reactive sites' 
respectively. 

By stoichiometry, we have: 

nA~k A = nB~k B (5 )  

Substituting equations (2) and (4) into equation (5) gives: 

nAOt(Mn, A/MA, 1) = nB~(Mn, B/MB, 1) (6) 

or: 

where: 

- -  m 

~3 = nAa(Mn, A/MA, I)/[nB(Mn, B/MB, 1)] : rc~ (7) 

r = nA(Mn, ALMA, l )/[rib (Mn, B/MB, 1 )] (8) 

m 

Number-average molecular weight (M,) 
By definition, M n is just the total mass, mtotal, divided by 

the number of  molecules present at conversion c~, ntotal. 
Then: 

q 

M n = mtotal/ntota I (9) 

where: 

f g 

mtota 1 ----- Y .  (nA, iMA, i)q- Y. (nB, iMB, i) 
i = 1  i = 1  

= naMn, a + nsMn, B (10) 

ntotal = na q- nB -- naha  = na 4- nB -- ana(Mn, a/Ma, 1 ) 
(11) 

or: 

ntota I = n A -k- nB -- nBXB = n A + n B -  romB(Mn, B/MB, 1 ) 
(12) 

Note that na -t- nB is the total number of  moles of  polymer A 
and polymer B initially in the system and naXa (or nBXB) is 
the total number of  bonds formed at conversion c~. Since 
each bond binds two molecules into one, ntotal, calculated in 
equation (11) or equation (12), represents the number of 
molecules present at conversion cx. Therefore, M n of  the 
resulting copolymer is a function of  Mn, h, Mn, B and 
conversion cx. 

Weight-average molecular weight (Mw) 

Pick a reactive site 'a '  at random from a randomly 
chosen 'polymer A with i reactive sites' (denoted Ai) as 

ll/out sketched in Figure 1. The random variable, ,,h,i, is the 
weight attached to 'a '  looking out from its parent molecule 
in the direction ---J. Based on assumptions (1) and (2) 

ll7OUt above, ,, a, i is independent of  the number of  reactive sites of 
polymer A to which the randomly chosen 'a '  belongs; 
therefore w~U,t i can be represented as W~ ut. Then: 

0, P = 1 - c~ (if site a does not react) 

w~ut  ~ g 
W in a,i, P = od iq i /Z  (iqi)] (i = 1,2 . . . . .  g) (if site a reacts with site b) 

i=1 

0 - -  
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Figure I Schematic illustration of polymer formed by grafting reaction between polymer A and polymer B, both polydisperse: ©, site 'a' on polymer A; El, 
site 'b' on polymer B; ..... , grafting reaction between polymer A and polymer B 
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where P denotes probability and W~i is the weight attached 
to site 'b' of 'polymer B with i reactive sites' (denoted B ;) 
looking along __~2 into its parent molecule. Since the number 
of reactive sites of polymer B to which W~i belongs 
determines the number of sites on that polymer B available 
for reaction, the subscript i in W~i is needed to specify the 
number of reactive sites of polymer B to which wBni belongs 
(similarly, W~Ul can be represented as  W~ ut and the'subscript 
i in W~,i is needed to specify the number of reactive sites of 
polymer A to which W~,i belongs). Since the number of 
reactive sites on all the B; is nniq; and the total number of 
reactive sites 'b' in the system is ~ = 1  (nBiqi), the 
probability that a randomly chosen reactive site 'b' belongs 
to Bi can be denoted iqi/~gi= l(iqi). 

As c~ represents the fraction of 'a' sites that have reacted 
(i.e. ~ represents the probability of a randomly chosen 'a' 
reacting with 'b'), the probability of a randomly chosen 'a' 
reacting with B i is oz[iqi/~g=l(iqi)]. By the law of total 
probability for expectation, we have: 

g g 

E(W~Ut) = Z {E(W~i).a[iqJ Z (iqg)]} +0.(1 -oz) 
i = 1  i = l  

g g 

= ~[ ~. iqiE(W~i)]/Z (iqi) (13) 
i = 1  i = l  

g 

= O~MB, I[ Z iqiE(W~i)] Mn, B 
i = l  

g • 
where Y'i= a0qi) is replaced by M-n,B/MB, 1 (see Appendix 
A). A similar argument can be applied to W1] ut. Therefore: 

f 
E(W~ m) r o t M A ,  1 [ ~-~ • in = lpiE(W'A,i)] m n ,  A 

i = l  

(14) 

Considering the copolymerization between two poly- 
disperse polymers (polymer A and polymer B), we can 
derive for a randomly chosen 'polymer A with i reactive 
sites' (denoted Ai): 

i - 1  
W in - -  M out A,i-- A,i+ ~ W ~ , / ( i = l , 2  . . . . .  f )  

j = l  

(15) 

where MA,i is the molecular weight of A; and W~, u} is the 
weight attached to the jth branch of a randomly chosen A;. 
Note that Ai has i reactive sites and W~ u} (j' = 1,2 ..... i - 1) 
are independent random variables with the same distribu- 
tion: W~ "t. Similarly, for a randomly chosen 'polymer B 
with i reactive sites' (denoted Bi): 

i - I  
w i n  __ out ~,i--MB, i+ ~. W~,j ( i=1 ,2  .. . . .  g) 

j = l  

(16) 

lit'out where MB,i is the molecular weight of B; and ,,B,j is the 
weight attached to the jth branch of a randomly chosen B ;. 

iMout Note that B; has i reactive sites and ,,n,j ~ = 1,2 ..... i - l) 
are independent random variables with the same distribu- 
tion: W~ at. These two sets of equations (equations (15) and 
(16)) will recycle due to the recursive nature of the structure. 
Taking the expectation of equation (l 5) leads (see Appendix 
B) to: 

in E(W~,i)=MA, i + ( i -  I)E(W~ ut) ( i=  1,2 ... . .  f )  (17) 

Multiplying both sides of the above equation by ip; and 
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summing from i = 1 to f, we have: 

/ 
E • in [lpiE(WA, i)] 
i = 1  

f f 

= ~. (ip;MA, i)+E(W,~ ut) ~ [i(i- 1)p;] (18) 
i = l  i = 1  

E W °ut - -  =(Mn, AMw, A)/MA, 1 + ( A )[(Mn.AMw A )  / 

m2, l - -Mn, A[MA, I] 

where z f = ,  (ipiMA.i)_2, Yf£=, (ipi) and Z{=l (i2pi) are 
replaced by (Mn, AMw, A)/MA, 1, Mn, A/MA, 1 and 
(Mn, AMw, A)/M2 i respectively (see Appendix A). Mw, A 
represents the weight-average molecular we!ght of polymer 
A. A similar argument can be applied to w~ni. Therefore: 

in E(Wn,i)=Mn, i + ( i -  1)E(W~ ut) ( i=  1,2 . . . . .  g) (19) 

and 

g 
Z [iqiE(W~i)] = (Mn, BMw, B)/MB,, + E(w~ut) 
i = 1  

X [(Mn, B~fw, B)/M 2, 1 -- mn, B/MB, 1] 

(20) 

Substituting equations (18) and (20) into equations (13) and 
(14), E(W~ at) and E(W~ at) can be solved simultaneously as: 

E ( W ~  ut)  = ° t [ ~ f w ,  B + r°tM-w,A(Mw, B/MB, 1 - -  1)]/ 

[1  - -  rot2(-Mw, A]MA, 1 - -  1)(Mw, B/MB. 1 - 1)] 

(21) 

E(W~ ut) = r ° ~ [ m w ,  A + ° t M w ,  B ( M w ,  A / M A .  I - -  1)]/ 

[1  - -  ro~2(Mw, A/MA, 1 - -  1)(Mw, B/MB, 1 - l ) ]  

(22) 

The molecular weight, WA,;, of the entire molecule to which 
a randomly chosen Ai belongs will just be the molecular 
weight of A; plus the weights attached to i reactive sites 
looking out from each site. Therefore: 

i 

WA, i =MA, i + Z W~, t) ( /=  1,2 . . . . .  f )  (23) 
j= 1 

Taking the expectation of this equation leads (see Appendix 
B) to: 

E(WA, i) = MA, i + iE(W~ at) (i = 1,2 ..... f)  (24) 

A similar argument can be applied to WB,i, the molecular 
weight of the entire molecule to which a randomly chosen 
Bi belongs. Then: 

E(W~,i)=MB,i+iE(W~ ut) ( i=  1,2, ...,g) (25) 

Let YA,i and YB.i denote the weight fractions of A; and B~ in 
the system, respectively: 

f g 
YA, i = nA, iMA, i/[ Z (nA, iMA, i) -}- Z (rtB, iMB, i)] 

i = 1  i = 1  
m 

= rlA, iMA, i/(nAMn, A -t- nBMn.s) 

(26) 
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f g 

YB, i = riB, iMB, il[ ~ .  (hA, iMA, i) -}- 2 (riB, iMB, i)] 
i =  1 i------ 1 (27) 

"-= riB, iMB, i/(nAMn, A + nBMn, B) 

By definition, Mw, the first moment of the molecular weight 
distribution, can be expressed as: 

f g 

M w  ~ - - E ( W ) :  Y~ [YA, iE(WA, i)]JI- Z [YB, iE(WB, i)] 
i=1  i=1  

f g 
: { Z [nA, iMA, iE(WA, i)] -F Z [nB,iMB, iE(WB, i)]}] 

i = l  i=1  

(nAMn, A -1- nBMn, B) (28) 

where: 

f f 
Z [hA, iMA, iE(WA, i)1 = nA Z {piMh,/[MA, i 4- iE(W°AUt)l } 
i = l  i=1  

f f 
hal 2 2 out = (PiMA, i)'}-E(W~ ) Z (ipiMA, i)] 

i=1  i=1  

= nA [Mn, AMw, A q- E(W~Ut)(Mn, AMw, A)/MA, l ] 

(29) 

Note that Y'f=I (piML) a n d  ~ f : l  (ipiMA, i) are replaced by 
Mn, AMw, A and (Mn, AMw, A)/MA, 1 respectively (see 
Appendix A). Similarly: 

g 
Z nB, iMB, iE(W13, i) = nB[Mn, BMw, B q- E(WBUt) 
i =  1 (30) 

× (Mn,13Mw, B)/M13,1] 

Since E(W~ ut) and E(W~ ut) are given in equations (21) and 
(22), substituting equations (29) and (30) into equation (28) 
gives: 

when: 

otgel2 = 1/[r(~ w' ALMA, l - 1)(Mw, 131MB, l - 1)l (34) 

For the monodisperse polymer A and polymer B, we have 
Mn, A = Mw, A and M.,13 = Mw, B. Then the number of 
reactive sites 'a' on polymer A is: 

f = Mw, A/MA, 1 (35) 

Similarly, the number of reactive sites 'b' on polymer B is: 

g = Mw, BIMB, 1 (36) 

Substituting equations (35) and (36) into equation (31), Mw 
reduces to the result derived by Macosko and Miller 13 and 
Shiau 16 for a copolymerization system between nA moles of 
f-functional A-type monomers and nB moles of g-functional 
B-type monomers. 

Z-average molecular weight (Mz) 
M z is defined as the ratio of the second moment of the 

molecular weight distribution, E(W2), to the first moment, 
E(W). Note that Mw represents E(W). Thus: 

Mz = E(wz)/E(W) (37) 

Taking the square of both sides of equation (15) yields: 

i - 1  i - I  
(l,lzin ~2 - -  ~ar2 "VA, i) . . . .  A,i q- 2 M A ,  i( ~ out W~,j) "q- ( ~ l'11°ut'12" A,j) 

j = 1 j : l (38) 

(i ----- 1,2 . . . . .  f )  

Taking the expectation of the above equation (see Appendix 
B) gives: 

in 2 = M 2, i + 2(i - 1)MA, iE(W~ ut) -F (i - 1)E[(W~Ut) 2] E[(WX, i) l 

+ (i - 1)(i - 2)[E(W~Ut)] 2 (i = 1, 2 . . . . .  f )  

(39) 

- -  Mw, A -4- ot(Mw AlMA 1)[Mw B "{- rotMw, A(Mw, B/MB, 1 -- 1)] 
Mw = YA ' ' ' 1 --rot2(Mw, A/MA, l - -  1 ) ( ~ t w ,  B / M B ,  1 - -  1 )  

q- YB Mw, B + rot(Mw, B/M13, 1 ) [Mw, A "4- otMw, B (Mw,  ALMA, 1 -- 1)] 
1 - rot2(Mw, A/MA, 1 -- 1)(Mw, B/MB, 1 -- 1) 

(31) 

where YA and YB represent the initial weight fractions of 
polymer A and polymer B in the system, respectively: 

f f g 

YA: Z (nA, iMA, i)[[ Z (nA, iMA, i) -F Z (nB, iMB, i)] 
i = 1  i=1  i=1  

---- nAMn, A/(nAMn, A -1- nBMn, B) (32) 

g f g 
Y13 = Z ("13,iM13,i)1[ Z (ng, iMa, i) + Z (n13,iMB, i)] 

i=1  i=1  i=1  

_ _  _ _  m 

= nBMn, 13/(nAMn, A -~- nBMn, 13) (33) 

Therefore, M w of the r__esulting_ copol__ymer, given in equation 
(31), is a function of Mn, A, Mn, B__L' Mw, A, Mw, B and conver- 
sion ot. The value of ot at which Mw diver__ges is called the gel 
point (ot gel). AS shown in equation (31), Mw becomes infinite 

Multiplying both sides of the above equation by ipi and 
summing from i = 1 to f, we have: 

f 

Z {ipi E[(WI~,i)2]} 
i=1  

f f 

= Z (ipiM2A, i ) + 2E(W~Ut) ~ [i( i-  1)piMA, i] 
i=1  i-----1 

(40) 
f 

+ E[(W~ ut)2] Z [i( i-  1)pi] 
i = l  

f 
+ [E(W~Ut)]2 E [i( i-  1)(i - 2)p;] 

i=1  

where the terms Yf/= 1 (ipi M2, i), Ef= l (ipiMA, i), 
~'-f= l (i2piMA, i), Y.{= 1 (ipi), Y~{= 1 (i2 pi) and YY/= l (i3pi) cai1 
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be replaced by the average properties of polymer A (see 
Appendix A). Similarly, we can derive: 

g 

{iqiEt(W~i)2]} 
i = |  

g g 
= Z (iqiMg,i) + 2E(W~ ut) Z [i(i - 1)qiM13,i l 

i = l  i = l  

g 

4- E[(W~Ut) 21 ~" [i(i-1)qil 
i = l  

g 

4- [E(W~Ut)] z ~ .  [i(i - 1)(i - 2)qi] 
i=1 

(41) 

Then, similar to the development of equations (13) and (14), 
if the random variables (w~t)  2 and (W'dBut) 2 are used instead 
of I,WA ut and W~ ut respectively, we have: 

g 

E[(W~Ut) 2 ] = °tMB, 1 { Z iqiE[(W~ i)2] }/Mn, 13 (42) 
i=1 

f 
E[(W~Ut) 2 ] -= rOtMA, l { Z ipiE[(W~, i)2] }]Mn, A 

i=1 
(43) 

Thus, by substitution of equations (40) and (41) into equa- 
tions (42) and (43), E[(W~Ut) 2] and E[(W~Ut) 2] can be solved 
simultaneously, since E(W~ ut) and E(W~ ut) have been given 
in equations (21) and (22). 

Taking the square on both sides of equation (23) yields: 

i 

W2A, i=M2.i4- 2MA, i( Z W:~t:) ) 
j = l  

(44) 
i 

4-( Z W~,U} )2 (i = 1,2 .....  f )  
j = l  

Taking the expectation of the above equation (see Appendix 
B) gives: 

E(W2A, i) = M2A, i 4- 2iMa, iE(W~ ut ) 4- iE[(WXUt) 2 ] 
(45) 

4- i(i - 1)[E(W~Ut)] 2 (i = 1,2 .....  f )  

Similarly, we can derive: 

E(W2B, i) = M2,i 4- 2iMB, iE(W~3 ut) 4- iE[(W~Ut) 2 ] 
(46) 

4- i(i - 1)[E(W~Ut)] 2 (i = 1,2 .....  g) 

Then E(W2), by definition, can be expressed as: 

f g 
E(W2)= ~. [YA, iE(W2,i)] + ~ [Y.,iE(W2,i)] 

i = l  i = l  

f g 

~- { Z [nA, iMA, iE(WI, i)]4- Z [nB, iMB, iE(W2, i)]}] 
i=1 i=1 

(nAMn, A 4- nBMn, B) (47) 

where: 
f 

~.  [nA, iMA, iE(W~,,)] 
i=1 

f 
= h A  ~ [piMA, iE(WI, i)] 

i=1 

f f 
= h A {  ~-- (PiM3A, i) Jr 2E(W~ut)Z (ipiM2, i) 4-E[(W~ut)2] 

i = l  i=1 

f f 
× Z (ipiMA, i)4-[E(W~ ut)]2 ~.. [i( i-  l)piMA, i] } (48) 

i=1 i = l  

g 

Z [riB, iMB, iE(W~, i)] 
i = l  

g 

=rib Z [qiMB, iE(W2,i )] 
i = l  

g g 

= nB{ ~_. (qiM~, i) + 2E(W~B ut) ~ (iqi M2, i) 4- E[(W~Ut) 2 ] 
i = I  i = l  

g g 

× Z (iqiMB,i)+ [E(WB ut)]2 Z [i(i-l)qiMB, i]} (49) 
i=1 i=l 

Note that the terms such as ~ f_  Cn M 3 ~, f • 2 
Z g " M 3 ", ~"g 2 lktJ canA'i)be)-~i = I(lpiMA, i), i=ltqi B,i) /--i=l(iqiMB, i),~et'~.-- i replaced by 
the average properties of polymer A and polymer B, 
respectively (see Appendix A). 

Substituting equations (48) and (49) into equation (47), 
2 we can obtain a complete formula for E(W ). Thus, Mz can 

be calculated by equation (37) as a function of the average 
properties of polymer A and polymer B, and conversion o~. 
For the monodisperse case, M z reduces to the result derived 

13 16 by Macosko and Miller and Shiau . 

Z + 1-average molecular weight (M z + l) and other higher 
average molecular weights 

Mz + 1 is defined as the ratio of the third moment of the 
molecular weight distribution, E(W3), to the second 
moment, E(W2). Thus: 

M---z + 1 = E(W3)IE(W2) (50) 

The expression for E(W 3) is derived as follows. Taking the 
third power on both sides of equation (15) yields: 

i --I  i - 1  

(W~, i)3 = M3A, i 4- 3M2A, i( Z u:°utx ' rA, j  ) 4- 3MA, i( Z uzoutx2,, A,j) 
j = l  j = t  

i - 1  

4- ( Z uz°ut'3"A,jJ (i = 1 , 2  . . . . .  f )  
j = l  

(51) 

Taking the expectation of the above equation (see Appendix 
B) gives: 

E[(wi~, i)3] = M3A, i 4- 3(i -- 1)M~, iE(W~ ut) 

+ 3(i - 1)Ma, iE[(W~Ut) 2] 

+ 3(i - 1) ( i -  2)Ma, i[E(W~,Ut)] 2 

-4- (i - 1)E[(W,~Ut) 3 ] 

+ 3(i - 1)(i - 2)E[(W~Ut)2]E(W~ ut) 

4- (i - 1)(i - 2)(i - 3)[E(W,~Ut)] 3 (i = 1,2,. . .f) 

(52) 

Multiplying both sides of the above equation by ipi and 
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summing from i = 1 to f, we have: 

f 
Z {ipiE[(W]~, i)3]} 
i = l  

f f 
= Z (ipiM3A, i ) + 3E(W~Ut) Z [ i ( i -  1)piM2A, il 

i=1  i = l  

f 

+ 3E[(W~Ut)]2 Z [ i ( i -  1)piMA, i] 
i=1  

f 

+ 3[E(W~Ut)] 2 ~ [i(i - 1)(i - 2)piMA, i] 
i=1  

f 
J r -E[ (W~Ut)  3] Z [i(i- 1)pi ]  

i=1  

f 
out 2 out + 3E[(W~ ) ]E(W~ ) y .  [ i ( i -  1)( i -  2)pi] 

i=1  

f 
+ [E(W~Ut)] 3 ~ [i(i - 1)(i - 2)(i - 3)pi] 

i = l  

(53) 

Similarly, we can derive: 

g 

if" {iqiEt(W ~i)3] } 
i = !  

g g 

= Z (iqiM3,i) + 3E(W~3Ut) ~ [i(i-- 1)qiM2,i] 
i = l  i = l  

g 

q- 3E[(WBUt)2] Z [ i ( i -  1)qiMB, i] 
i--1 

g 

+ 3[(E(WBUt)]2 Z [i(i - 1)(i - 2)qiMs, i] 
i=1  

g 

+ E[(W~Ut)3] Z [i(i-1)qi] 
i=1  

g 

+ 3E[(WBUt)2]E(WBUt) Z [ i ( i -  1) ( i -  2)qi] 
i = l  

g 

+ [E(WBUt)]3 Z [i(i - 1)(i - 2 ) ( i -  3)qi] 
i=1  

(54) 

Then, similar to the development of equations (13) and (14), 
out 3 out 3 the random variables (W~, )  and ( W ~ )  are used instead of 

W~ ut and W~ ut respectively, and we have: 

g 

E[(W~Ut) 31 = tXMB, I{ Z i in 3 qiE[(WB, i) ] } /Mn,  B 
i = l  

(55) 

f 
E[(W~Ut)3] = r°~MA,' { Z ' in lpiE[(WX ' i)31 } /Mn,  A 

i = l  
(56) 

Thus, by substitution of equations (53) and (54) into equa- 
out 3 out 3 tions (55) and (56), E[(W~, ) ] and E[(W~ ) ] can be solved 

out ut out 2 simultaneously, since E(W~ ), E(W~ ), E[(W~ ) ] and 
E[(W~Ut) 2] have been solved previously. 

Taking the third power on both sides of equation (23) 

yields: 

i i 
W3,  A 3 2 lt/-out -~2 = MA i "}- 3MA i( Z w°ut~ i , , ,, A,jJ + 3MA, i( Z "A,jJ 

j = 1 j = l 

i 

~-( ~ .  ll/°ut'3"A,jJ (i = 1,2 . . . .  . f )  
j = !  

(57) 

Taking the expectation of the above equation (see Appendix 
B) gives: 

E( W3, i) = M3A, i + 3iM2, iE(W~ ut ) -'}'- 3iMA, iE[(W~Ut) 2] 

+ 3i(i - 1)MA, i[E(W°AUt)] 2 + iE[(W~Ut) 3] 

+ 3i(i - 1)E[(W°AUt)2]E(W°AUt ) + i(i - 1)(i - 2) 

× [E(W~Ut)] 3 (i = 1,2 . . . .  , f)  (58) 

Similarly, we can derive: 

E(W(3,i)3 = MB, + 3iM2,iE(W~Ut) + 3iMB,iE[(W~Ut)2] 

+ 3i(i - 1)MB, i[E(w~ut)] 2 .-F iE[(W~Ut) 3 ] 

+ 3i(i - 1)E[(W~Ut)2]E(W~ ut) + i(i - 1)(i - 2) 

x [E(W~Ut)] 3 (i --- 1, 2 . . . . .  g) (59) 

Then E(W3), by definition, can be expressed as: 

f g 

E(w3)= Y. [yA,,E(W,~,,)] + ~ [yB,,E(W3 ,)] 
i=1  i : 1  

f g 

= { Z [nA, iMA, iE(W3,i)] + ~-[na, iMB, iE(W3,i)]} / 
i =1  i=1  

)< ( n A M n ,  A + n B M n ,  B) (60) 

where: 

f 
Y .  [nA, iMA, iE(W3A, i)] 
i=1  

f 
-=hA Z [piMA, iE(W3, i)] 

i=1  

f f 

=hA{ Z (PiM4,i)+ 3E(W,~Ut) Z (ipiM3,i) 
i=1  i=1  

f 
+ 3E[(W~Ut) 2] ~. (ipiM~,i) 

i =1  

f 
+ 3[E(W2Ut)] 2 ~ [i(i - 1)piMp, i] 

i =1  

y 
+ E[(W2Ut)3] Z (ipiMA, i) 

i=1  

[ 
out 2 out + 3E[(W/~ ) ]E(W~ ) ~ [ i ( i -  1)piMA, i] 

i=1  

f 
+ [(E(W~ ut)]3 Z [i(i - 1)(i - 2)piMA, i] } 

i = l  

(61) 
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g 

Z [nB, iMB, iE(W3, i)] 
i= |  

g 
=riB Z [qiMB, i e ( W 3 ,  i)] 

i=1 

g g 

riB{ Z 4 = (qiMB, i) q- 3E(WBUt) Z (iqiM3,i) 
i= I i= 1 

g 

+3E[(WB ut)2] Z (iqiM2B, i ) 
i= I (62) 

g 

+ 3[E(WB ut)]2 Z [i( i-  1)qiM2,i] 
i = l  

g 

-+-E[(WBUt)3] Z (iqiMB, i) 
i = l  

g 

+ 3E[(W~Ut)2]E(WB ut) Z [i( i-  1)qiMB, i] 
i = l  

g 

+ [(E(Wl]Ut)]3 Z [i(i - 1)(i - 2)qiMB, i]} 
i=1 

Substituting equations (61) and (62) into equation (60), we 
can obtain a complete formula for E(W3). Thus Mz + 1 can be 
calculated by equation (50) as a function of the average 
properties of polymer A and polymer B, and conversion 
o~. For the monodisperse case, M z +l reduces to the result 
derived by Shiau 16. 

Higher moments of the molecular weight distribution can 
be derived by a similar approach. In general, E(W ~) is 
developed as follows. Taking the nth power on both sides of 
equations (15) and (16) yields: 

i - 1  
in n n n -  1( (W~,,i) = mA, i + nM~,i Z w~,j)o"t 

j = l  

i - I  
n(n - -  -t- 1 ) M ~ 5 2 (  Z tl"°uta2"A,j' 

2! j=l  

i - I  
n ( n -  1)(n-  + 2)M~5 3( Z u,.out,3 

rVA,jl + . . ,  
3! /=1 

i - I  
-~- ( Z ,i/out-~n,,A,j, (i = 1,2, . . . ,f)  

j = l  
(63) 

i - I  
in n n n -  1 ~ II/OUI~ (W~,i) = MB, i-l- nM'~,i ( ~ "'B,jI 

j = l  

i - I  .(.-i%:2( Z ,,.ou,,2 
+ 2! 'rB'J) 

j = l  

i - I  
+ n(n- 1)(n-  2!M~,~ 3 ( Z ' l '°utx3 A- 

vrB,j] T . . .  
3! j=l 

i - I  

+ ( Z W~,t~ )" (i = 1, 2 . . . . .  g) (64) 
j = l  

in n E W in n] As described previously, E[(W~,i) ] and [( B,i) can be 
obtained by taking the expectation of the above equations 
(see Appendix B). Then, Yf=l{ipiE[(WiAn)"]} and 

~g= l{iqiE[(W~n)"]} can be derived• Similar to the develop- 
ment of equations (13) and (14), the random variables 
(w~"t)" and (w~"t)" are used instead of W~, "t and W~ "t 
respectively, and we have: 

g 

EI(W~U') n]=aMs 1{ Z " E in . - -  , tqi [(WB, i) ] } /M, ,~  (65) 
i = l  

f 
E[(W~Ut)n]=r°tMA, j{ Z ipiE[(W~,i)n]}/M'n, A (66) 

i= l  

Thus E[(w~ut) n] and E[(W~Ut) n] c a n  be determined simulta- 
neously• 

Taking the nth power on both sides of equation (23) 
yields: 

i 
W n _ n _+_nM,~in-1 Z u/°ut~ A, i - -M'A , i  , ( " A , j )  

n ( n -  1). , -2(  i 
"J- T M A ,  i Z l'v°ut'~2"A,j.1 

• j=l 

i 
n(n -- 1)(n -- 2)M~,53 ( Z "ll°ut'~3 + VV A,j l -~- " " 3! j=~ 

i 

"J- ( Z l'll°ut'~n, rA,j) (i = 1 ,2  . . . .  . f )  (67)  
j = l  

Thus E(W~,i) can be obtained by taking the expectation of 
the above equation (see Appendix B). Similarly, E(W~,i) 
can be obtained. Then E(W"), by definition, can be 
expressed as: 

f g 
E(wn)=" Z [YA, iE(W~,i)I + Z [YB, iE(W~3, i)] 

i=1 i=1 

f g 

= { Z [nA,,MA, iE(W~,i)] + Z [nB,'MB,'E(W~, i)]}/ 
i= 1 i= l 

(nAMn, a -{- nB~fn, B) (68)  

f n g n where Yi = l [nA, iMA, iE(W'A, i)] and Y-i = 1 [riB, iMB, iE(WB, i)] 
can be derived in a similar way as before. 

RESULTS AND DISCUSSION 

A model is presented in this paper for determining, without 
calculation of the complete distribution, the gel point, 
Mn, Mw, Mz, Mz+l and other higher average molecular 
weights of the resulting copolymer as a function of the 
reaction conversion and the average properties of two 
polydisperse reactive polymers• 

Numerical results of the model are illustrated in Figure 2 
for the grafting system studied by Nie et al. Js: the hydroxyl 
groups on cellulose acetate (CA) react with the anhydride 
groups on styrene-maleic anhydride random copolymer 
(SMA) to form graft copolymers. There are 85 hydroxyl 
groups of CA for a number-average molecular weight of 
46000 (polymer A) and 90 anhydrides of SMA for a 
number-averag__e molecular weight_ of 120 000 (polymer B). 
Therefore, Mn, A = 46 000, M,, a = 120 000, MA, 1 = 
Mn, A/85 and Ma, l=~tn.s/90. In the calculation, it is 
assumed for simli__city that na = 1, nB = 4, 
M~w,A/Mn, A = m z ,  A/Mw~A = M z +  I, A/Mz, A ~--" 1 •5 and Mw, B/ 
Mn, B = Mz, B/Mw, B =M¢+ i,B/Mz, B = 1.5. 

POLYMER Vo lume 39 Number  6 -7  1998 1323 



Average properties of polymer blends: L.-D. Shiau 

1 0 - -  

9 

o 8 
"7 

.~ 7 e- 

l 
5 

O 
0~ -~ 

O~ 
3 

> 
9 

Mz+l 

Mw 

Mnt 

gel 

0000 0.004 0.008 0.012 0.016 0.020 

conversion 

Figure 2 Mn, Mw, Mz and M z + I versus conversion a for the polymer formed by grafting reaction between polydisperse polymer A and polymer B 

Mn, Mw, Mz, Mz+l of the resulting copolymer versus 
reaction conver_sion (_.._~) are plott__ed in Figure 2. It is 
observed that M n < M w < M z < M z+l ,  which agrees with 
the definition of the average properties. Figure 2 also shows 
that gel point occurs at c~ = 0.0158 as calculated in equation 
(34), which shows that at the gel point, the average number 
of hydroxyl groups of CA consumed (XA) is 1.34 and the 
average number of anhydride groups of SMA consumed 
(1%) is 0.336 [as derived in equation (2) and equation (4), 
hA = ot(Mn, A/MA, t) and XB = 13(M,, BIMB, l)]. Therefore it 
can be concluded that the percentage conversions of the two 
reactive groups are quite small in the pre-gel region. 
Besides, it seems probable that one would start with a 
bimodal distribution in the early stages of reaction if the two 
reacting polymers have a different initial average molecular 
weight, which would tend to narrow to a monomodal 
distribution of much higher average molecular weight prior 
to gelation. 

The major advantage of this systematic approach is that, 
once the basic equations are set up, various average 
molecular weights can be directly derived by taking the 
nth power on both sides of these equations and then taking 
the expectation of the equations thus obtained. The model 
developed in this paper provides a general algorithm for 
solving for these average properties by computer. 
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APPENDIX A: 

For the polydisperse polymer A, various average molecular 

weights are defined as: 

f 
Mn, A = [ Z (na, iMA, i)]/nA 

i=1 
(Al) 

f f 
"Efw, a = [ Z (nA, iM2A, i )]/[ Z (nA, iMA, i)] 

i----I i=l 
(A2) 

f f 
M---z,A = [ Z (nA, iM3A, i )]/[ ~- (nA, iM2A, i)] 

i=1 i=1 
(A3) 

f f 
Mz+' A = [  Z (nA, iM4A, i )]1[ Z (nA, iM~,i)] (A4) 

i = [  i=~ 

Then the following equations can be derived based on the 
average properties of polymer A: 

I f 
Z (ipi)= Z (iMA,,nA, i/MA,]nA) 
i=l i=1 

(A5) 
f 

= [ Z (nA, iMa, i )]/(nAMA, 1) ='Mn, alMa, 1 
i=1 

f n : , Note that h a =  Z i = l  A,i and Pi na,i/nA. MAj is the 
molecular weight of 'polymer A with one reactive site'. 
The reactive sites 'a' are assumed uniformly distributed 
on the polymer chain, i.e. MA,i = iMA, t. Similarly: 

f Y 
Z (i2pi)= Z (i2M1,'nA, i/M~,' nA) 
i=1 i = l  

f 

-:  [ Z (nA, iM2A, i)l/(naM2, l )  = (Mn, AMw, A)IM2, I 
i =1  

(A6) 
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f f 
E (i3pi)= E (i3M3A, InA, i/M3, lnA) 
i = 1  i = 1  

f 

= [ E (nA, iM3,i)]/(nAM3, I) 
i = 1  

= ( M n ,  AMw, AMz,  A)IM3A, 1 

(A7)  

f f 
E (i4pi)= E (I'4M4,1RA, i/M4A,lnA) 
i = 1  i = 1  

f (A8) 
=[ E (nA, ill/14A.i)]](nAM4A. 1) 

i = l  

= (Mn,AMw, AMz, AMz + 1, A)/M~, 1 

Since MA,i = iMg,|, we can also derive the following 
expressions: 

f f 

E (ipiMA, i)=MA, 1 E (iapi)=(Mn, AMw, A)/MA,I (A9) 
i = 1  i = I  

f f 

E (i2piMh, i) =MA, 1 E (i3pi) = (Mn, AMw, AMz, A)/M2A,1 
i = l  i = 1  

(A10) 

f f 

E (i3piMA, i )=MA,I  E (i4pi) 
i = 1  i = 1  

= ( M n ,  AMw, A Mz,  A M z  + 1, A ) / M 3 ,  1 

(All)  

f f 

E (ipiM2A, i) =M2,1 E (i3pi) = CMn, AMw, AMz,A)]MA,I 
i = 1  i = l  

(A12) 

f f 
E .2 2 2 E (i4pi) (I piMA, i) = MA, 1 
i = 1  i = l  

= (Mn, AMw, AMz, AMz + 1, A)/M2, 1 

(A13) 

f f 
E " 3 3 E (i4pi) (tpiMA, i) = MA, 1 
i = 1  i = 1  

= (Mn, AMw, AMz,  A M z  + 1, A ) /MA ,  1 

(A14) 

f f 

E (piMA, i ) : M A ,  i E (iPi)=-Mn, A 
i = 1  i = 1  

(Al5) 

f f 
y~ 2 2 (piMA, i) = MA, l E (i2pi) = Mn, AMw,A 
i = 1  i = l  

(A16) 

f f 
y 3 3 (PiMA, i) = MA, 1 ~ (i3pi) = ~ t n ,  AMw, A Mz,  A 
i = 1  i = l  

(A17)  

f f 

E (PiMA,4 i) =M4A, 1 E ( i 4 p i ) = M n ,  A M w ,  AMz,  A M z + I , A  
i = l  i = l  

(A18) 

Likewise, similar expressions can be derived for polymer B. 

APPENDIX B: 

Based on probability theory 19, if Xb X2 ..... Xf are 
independent random variables with the same distribution 
X, then: 

f f 

E( E x i )=  E E(Xi)=fE(X) (B1) 
i = 1  i = 1  

f 

E( E Xi)2= E( 
i = 1  

f f f 
Zx~+ Z Z x,x,) 
i = 1  i=| j=l,jvai 

f f f 

=e( Z xh+E( Y Y x, xo 
i= 1 i= l j= l,j¢i 

f f f 

= E g(x2i)"~ E E E(Xi)E(Xj ) 
i = 1  i=l j=t,j~i 

=fE(X 2) +fO r - 1)[E(X)] 2 

(B2) 

f 

E( E Xi)3 = E( 
i = 1  

f f f 
Zx~+3Z Y x~x, 
i= 1 i= 1 j= I,j¢i 

f f f 
+ y y y x,x~x,.) 

i= 1 j= t,j¢ik= l,k¢ie=j 

=E(  
f f f 
y x})+ 3e( y Y x?x) 
i = 1  i=lj=l,j¢i 

f f f 
+ E( y Y y x,x~x~) 

i = 1 j = l,j¢i k = 1, k:/:ig:j 

f f f 
= y E(x~)+3 y Y e(x~)e(x) 

i= 1 i= I j= 1,j:~i 

f f f 

+ y. y. y. E(x~)e(x~)e(x~) 
i= 1 j= l,j~i k = 1,k~i~j 

=fE(X 3) + 3 f ( f  - 1 )E(X 2)E(X) 

+ f O  e -- 1)(f  -- 2 ) [E(X)]  3 (B3) 

f 
E( E xi)n 

i=l 

= E( "'" X<X~2 ~1~ !n2 !. . .nf ! 1 2 ..... ~ J nl nj>-O hi,n2 
(hi +n2 + "" +nf =hi 

L n! TE(X~, y n  2 y n ) ,  
= "~2 . . . .~n ) 

nt,n2 ..... nr>-o nl !n2!'" .nf . 
t t/[ + tl 2 + . .  + t~f =/1)  

n! 
= ~ nt [n2!,..nf! E(X•' )E(X22)'" .E(X•') 

nl,n 2, ...,n[>--O 
(n I + n2 + --" + nj = ,l 

= L , , . . I n !  _E(Xn~)E(Xnz)...E(XnS) 
n,,n2 ..... ,~r>_O n~ .n2....w. 

Oq +"2 + -" +~!1 -n) 

(B4) 
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